Data-Centric Approaches to Recommendation

<u>Question</u>: Is more data what you need for better recommendation?

Noveen Sachdeva

Cnoveens97 UC San Diego

Google Brain, July 2022

makeameme.org

Talk Layout

- Primer, Premise & Scope
- SVP-CF & Data-Genie 🧞
- Infinite Recommendation Networks
- Dataset Distillation (Distill-CF)
- Future Directions

Primer

Recommender Systems

• Extremely sparse feedback

- Inherently bi-partite
- Long-tailed
- Missing-not-at-random

Item Popularity

Users

1					1	
				1		
		1			1	
	1					
			1			1
				1		
1						1_
		1			1	

Items Movies, Ads, Songs ...

Items

Premise

What is Data-Centric AI?

Model-Centric AI

Data

Model

Freeze

Improve

• Well studied

Data-Centric AI

Data

Model

Improve

Freeze

• Under-studied

• Scalable

Premise

Why Data-Centric Recommender Systems?

- Unsupervised \rightarrow large quantities of user-feedback
- Scaling-up systems by scaling-down data
 - Shift focus from data quantity \rightarrow data "quality"
 - Dimension in performance : resources tradeoff
 - Savings in time, human-effort & environment degradation

Factorization, Item-item CF, etc.

Scope

Generate a data sample which can guarantee **similar** performance of the same downstream model when trained on the full-dataset vs. data summary

Generate a data sample which can accurately retain the relative ordering of different learning algorithms when trained on the full-dataset vs. data summary

Scope

Scaling-up Systems by Scaling-down Data

Generate a data sample which can guarantee **similar** performance of the same downstream model when trained on the full-dataset vs. data summary

- Direct deployment of models trained on data summary
- Faster research iterations
- Need modeling assumptions (at least for RecSys)

Generate a data sample which can accurately retain the relative ordering of different learning algorithms when trained on the full-dataset vs. data summary

- Model search e.g. NAS, hyper-parameter optimization
- Offline model-to-model comparison
- No modeling assumptions

Scope

Pick the most informative subset of data-points

- Heuristics
 - Random, Head-user, Random-walks, Centrality...
- Coreset construction
 - Combinatorial optimization
- Expressivity limited by the collected data

Generate a set of fake and informative data-points

- Typically, treat the to-be-synthesized data as parameters, and learn them through gradient descent
- In addition to being useful, the synthesized data is fake — easy to share, release ...
- Expressivity limited by the optimization procedure

SVP-CF

Selection-via-proxy for collaborative filtering data

<u>Premise</u>: **Easy** parts of a dataset are most likely **easy** for all recommendation algorithms. Hence, removing such data is unlikely to change the relative ordering of algorithms.

SVP-CF

Selection-via-proxy for collaborative filtering data

Robust framework:

- Uses a proxy model to tag the **importance** of each interaction
- Efficiently handle multiple recommendation scenarios *e.g.* explicit, implicit, sequential, etc.
- Sample across varieties of data modalities: interactions, users, items, or even combinations of them

SVP-CF-Prop

Handling the missing-not-at-random characteristics

- Re-weigh the importance scores in SVP-CF using the probability of a user-item interaction going missing (propensity).
- Implicitly also handles the long-tail and data sparsity issues in user-item interaction data.

Which sampler is best for me?

<u>Premise</u>: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a sampling budget, can **automatically predict** which sampling scheme would be the best?

Which Sampler is best for me?

- Dynamically predicts the **performance** of a sampling strategy for any given CF-dataset.
- A trained DATA-GENIE model can transfer to any dataset, and can predict the utility of any sampling strategy.

How is it trained?

- Circumvents the time-consuming process of training and benchmarking various algorithms.
- DATA-GENIE-regression:

$$\arg\min\sum_{\mathcal{D}, s, p} \left(\mathcal{R}_{s,p} - \hat{\mathcal{R}}_{s,p} \right)^2$$

• DATA-GENIE-ranking:

$$\arg\min\sum_{\mathcal{D}, p}\sum_{\mathcal{R}_{s_{i},p} > \mathcal{R}_{s_{j},p}} - \ln \sigma \left(\hat{\mathcal{R}}_{s_{i},p} - \hat{\mathcal{R}}_{s_{j},p} \right)$$

D

Ds,p

Experiments

Setup

	Sampling strategy		
Jg	Random		
uldi	Stratified		
Interaction sam	Temporal		
	SVP-CF w/ MF		
	SVP-CF w/ Bias-only		
	SVP-CF-Prop w/ MF		
	SVP-CF-PROP w/ Bias-only		
	Random		
ling	Head		
lqm	SVP-CF w/ MF		
Jser sai	SVP-CF w/ Bias-only		
	SVP-CF-Prop w/ MF		
1	SVP-CF-PROP w/ Bias-only		
-	Centrality		
aph	Random-walk		
Gr	Forest-fire		

Table 1: Sampling strategies used in our experiments

- 16 different sampling strategies
- 6 collaborative filtering datasets
- 7 recommendation algorithms in our benchmarking suite

• Explicit/Implicit/Sequential feedback for each CF-dataset

• A total of **400***k* recommendation models trained! (~9 months of compute time!)

Experiments

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
ıg	Random	0.407
iplin	Stratified	0.343
sam	Temporal	0.405
on	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
	Random	0.431
ling	Head	0.19
mp	SVP-CF w/ MF	0.344
r sa	SVP-CF w/ Bias-only	0.343
Jse	SVP-CF-Prop w/ MF	0.429
-	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
aph	Random-walk	0.396
Gr	Forest-fire	0.382

Table 2: Average Kendall's Tau of various sampling strategies

- the worst ideas of all sampling strategies.
- recommendation algorithms.

Figure 3: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be

• SVP-CF significantly outperforms other samplers in retaining the ranking of different

- Using SVP-CF, we can efficiently gauge the ranking of different algorithms with adequate confidence on 40-50% data sub-samples, leading in an ~2x time speedup.
- DATA-GENIE enjoys the same level of performance with only **10%** of the original data, equating to ~5.8x time speedup!

Infinite-width AutoEncoder for Recommendation

<u>Premise</u>: Does stretching the bottleneck layer of an autoencoder till ∞ help in better recommendation?

co-AE

Primer: Neural Tangent Kernel

- Infinite-width Correspondence: Performing Kernelized Ridge Regression with the Neural Tangent Kernel (NTK) emulates the training of an infinite-width NN for an infinite number of SGD steps.
- For a given neural network architecture $f_{\theta} : \mathbb{R}^d \mapsto \mathbb{R}$, its corresponding NTK $\mathbb{K} : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ is given by:

$$\mathbb{K}(x, x') = \mathbb{E}_{\theta \sim W} \left[\left\langle \frac{\partial f_{\theta}(x)}{\partial \theta}, \frac{\partial f_{\theta}(x')}{\partial \theta} \right\rangle \right]$$

- Learning follows a double-descent phenomenon
- Finite-width counterparts empirically outperform NTK for standard image classification tasks

19

$\infty - AE$

Methodology

- *X_u* is the bag-of-items representation for user *u* i.e. all the items that *u* interacted with, and we aim to reconstruct it along with missing user preferences
- Due to the infinite-width correspondence, ∞ -AE optimizes in closed-form:

$$\hat{X} = K \cdot (K + \lambda I)^{-1} \cdot X$$
 s.t. $K_{u,v} := \mathbb{K}(X_u, X_v)$

- The optimization has only a single hyper-parameter λ
- Training: $\mathcal{O}(U^2 \cdot I + U^{2.376})$ Inference: $\mathcal{O}(U \cdot I)$ • Time complexity
- Training: $\mathcal{O}(U \cdot I + U^2)$ • Memory complexity

) $\forall u, v$

Inference: $\mathcal{O}(U \cdot I)$

$\infty - AE$

Experiments

Dataset	NeuMF	GCN	MVAE	EASE	
Magazine	13.6	22.5	12.1	22.8	
ML-1M	25.6	28.8	22.1	29.8	
Douban	13.3	16.6	16.1	19.4	
Netflix	12.0		20.8	26.8	

Table 5: nDCG@10 performance (higher is better) of various recommendation algorithms. * represents training on 5% random users.

- ∞ -AE outperforms various state-of-the-art methods, even when trained on just 5% random users
- 1 layer seems to be enough for optimal recommendation performance: common folk-knowledge
- But how to scale it up? 🤪

Figure 6: Performance of ∞ -AE with varying depth.

• Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great!

Data Distillation for Collaborative Filtering Data

<u>Premise</u>: Treat the to-be-synthesized data as parameters, and learn them through a bilevel optimization.

Items Movies/Ads/Songs ...

Overview & Challenges

Challenges:

- *D^s* consists of **discrete** (u, i, r) tuples
- Semi-structuredness: some users/items are more popular than others
- *D^s* is typically extremely sparse

Methodology

Robust framework:

- Uses Gumbel sampling on X^s to mitigate the heterogeneity of the problem
- Perform Gumbel sampling multiple times for each fakeuser to handle dynamic user/item popularity
- Automatically control sparsity in \hat{X}^s by controlling the entropy in X^s
- **Optimizes** for data-quality rather than quantity

Experiments

- Using Distill-CF, we can get **96-105**% of full-data performance on as small as **0.1%** data sub-samples, leading to as much as ~1000x time speedup!
- Distill-CF works well even for the second-best EASE model, even though data isn't optimized for it

Dataset

Magazine ML-1M Douban

Netflix

Table 8: nDCG@10 performance of various recommendation algorithms. * represents training on 5% random users. Distill-CF has a user budget of just 500 (0.1% for Netflix).

Figure 7: Does Distill-CF outperform other samplers? (Log-scale)

	NeuMF	GCN	MVAE	EASE	∞-AE	∞-AE (Distill-CF)
)	13.6	22.5	12.1	22.8	23.0	23.8
	25.6	28.8	22.1	29.8	32.8	32.5
	13.3	16.6	16.1	19.4	24.9	24.2
	12.0		20.8	26.8	30.5*	30.5

Experiments (Contd.)

- Distill-CF is **robust to noise** (even though not optimized for it), and is able to offer significant performance even at high noise ratios and very small support datasets!
- Less is more: EASE is more accurate when trained on lesser amounts of data generated by Distill-CF, compared to training on the full-data

Figure 10: Performance of different samplers when there is noise in the original data.

Figure 11: Performance comparison of ∞-AE *vs*. EASE when trained on down-sampled, noisy data.

Future Directions

Extensions

∞ Recommendation Networks

- Making it more scalable sparse kernel computations
- More applications search, XC, ...
- Extending to sequential recommendation

Fairness & Privacy

- How to optimize for these while sampling/distilling
- Guaranteeing data privacy in distills, such that deanonymization is impossible

Ranksets

- Formalize the notion of variance-sensitive sampling
- DATA-GENIE is still a two step-process. How to optimize for a rankset?

Applications

- Continual Learning catastrophic forgetting
- NAS, Hyper-parameter Optimization

Acknowledgement

Advisor

Julian McAuley UC San Diego

Collaborators

Cornell University.

INFORMATIONAL INSTITUTE OF

HYDERABAD

References

[1] On Sampling Collaborative Filtering Datasets. Sachdeva, Wu, McAuley. In WSDM '22.
[2] Infinite Recommendation Networks: A Data-Centric Approach. Sachdeva, Dhaliwal, Wu, McAuley. arXiv '22.

Thank you! Questions? ©noveens97

- For papers, code, and these slides:
 - noveens.com