Infinite Recommendation Networks A Data-Centric Approach

<u>Question</u>: Is more data what you need for better recommendation?

Noveen Sachdeva, Mehak Preet Dhaliwal, Carole-Jean Wu, Julian McAuley Cnoveens97

UC San Diego & Meta AI

NeurIPS, 2022

Infinite-width Autoencoder for Recommendation

<u>Premise</u>: Does stretching the hidden layers of an autoencoder till ∞ help in better recommendation?

co-AE

Primer: Neural Tangent Kernel

- Infinite-width Correspondence: Performing Kernelized Ridge Regression with the Neural Tangent Kernel (NTK) emulates the training of an ∞-width NN for an ∞ number of SGD steps.
- For a given neural network architecture $f_{\theta} : \mathbb{R}^d \mapsto \mathbb{R}$, its corresponding NTK, $\mathbb{K} : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ is given by:

$$\leq (x, x') = \mathbb{E}_{\theta \sim W} \left[\left\langle \frac{\partial f_{\theta}(x)}{\partial \theta}, \frac{\partial f_{\theta}(x')}{\partial \theta} \right\rangle \right]$$

- Learning follows a **double-descent** phenomenon
- Finite-width counterparts empirically outperform NTK for standard image classification tasks

Figure 1: Credit: https://openai.com/blog/deep-double-descent/

$\infty - AE$

Methodology

- X_u is the bag-of-items representation for user u i.e. all the items that u interacted with, and we aim to reconstruct it along with missing user preferences
- Due to the infinite-width correspondence, ∞ -AE optimizes in closed-form:

$$\hat{X} = K \cdot (K + \lambda I)^{-1} \cdot X$$
 s.t. $K_{u,v} \triangleq \mathbb{K}(X_u, X_v)$

- The optimization has only a single hyper-parameter λ
- Training: $\mathcal{O}(U^2 \cdot I + U^{2.376})$ Inference: $\mathcal{O}(U \cdot I)$ • Time complexity
- Training: $\mathcal{O}(U \cdot I + U^2)$ • Memory complexity

 $\forall u, v$

Inference: $\mathcal{O}(U \cdot I)$

$\infty - AE$

Experiments

Dataset	NeuMF	GCN	MVAE	EASE	
Magazine	13.6	22.5	12.1	22.8	
ML-1M	25.6	28.8	22.1	29.8	
Douban	13.3	16.6	16.1	19.4	
Netflix	12.0		20.8	26.8	

Table 2: nDCG@10 performance (higher is better) of various recommendation algorithms. * represents training on 5% random users.

- ∞-AE outperforms various state-of-the-art methods, even when trained on just 5% random users (Netflix)
- 1 layer seems to be enough for optimal recommendation performance (common folk-knowledge)
- Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great! But, how to scale it up? 😌

Figure 3: Performance of ∞ -AE with varying depth.

Data Distillation for Collaborative Filtering Data

<u>Premise</u>: Can we **summarize** the massive & sparse user-item matrix into a **terse** data summary?

Items Movies/Ads/Songs ...

Premise

What is Data-Centric AI?

Model-Centric AI

Data

Model

Freeze

Improve

Data-Centric AI

Data

Model

Improve

Freeze

Premise

Why Data-Centric Recommender Systems?

- Unsupervised \rightarrow large quantities of user-feedback
- Scaling-up systems by scaling-down data
 - Shift focus from data quantity \rightarrow data "quality"
 - Savings in time, human-effort & environmental resources

Factorization, Item-item CF, etc.

Overview & Challenges

<u>Idea</u>: Treat the to-be-synthesized data as **parameters**, and learn them through a bilevel optimization.

- Challenges:
 - Data consists of **discrete** (u, i, r) tuples
 - Data is extremely sparse
 - Dynamic users/item popularity
 - Expensive bilevel optimization
 - Use ∞ -AE for closed-form computation of the inner loop
- Optimizes for data-quality rather than quantity

Outer loop — optimize the data summary for a fixed learning algorithm

Inner loop — optimize the learning algorithm for a fixed data summary

Methodology

- Uses Gumbel sampling on X^s to mitigate the heterogeneity of the problem
- Perform Gumbel sampling multiple times for each fakeuser to handle dynamic user/item popularity
- Automatically control sparsity in \hat{X}^s by controlling the entropy in X^s

Experiments

- Using Distill-CF, we can get **96-105**% of full-data performance on as small as **0.1%** data sub-samples, leading to as much as ~1000x time speedup!
- Distill-CF works well even for the second-best model (EASE), even though the data isn't optimized for it

Dataset

Magazine ML-1M Douban

Netflix

Table 5: nDCG@10 performance of various recommendation algorithms. * represents training on 5% random users. Distill-CF has a user budget of just 500 (0.1% for Netflix).

Figure 4: Does Distill-CF outperform other samplers? (Log-scale)

	NeuMF	GCN	MVAE	EASE	∞-AE	∞-AE (Distill-CF)
•	13.6	22.5	12.1	22.8	23.0	23.8
	25.6	28.8	22.1	29.8	32.8	32.5
	13.3	16.6	16.1	19.4	24.9	24.2
	12.0		20.8	26.8	30.5*	30.5

Experiments (Contd.)

- Distill-CF is **robust to noise** (even though not optimized for it), and is able to offer significant performance even at high noise ratios and very small support datasets!
- Less is more: EASE is more accurate when trained on lesser amounts of data generated by Distill-CF, compared to training on the full-data

Figure 7: Performance of different samplers when there is noise in the original data.

Figure 8: Performance comparison of ∞-AE *vs*. EASE when trained on down-sampled, noisy data.

Thank you!

- @noveens97
- For paper, code, and these slides:
 - noveens.com