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Minimize the difference
b/w these two rankings

Train Train

Generate a sample of a collaborative filtering (CF) 
dataset which can accurately retain the relative 
ordering of different recommendation algorithms

• Minimize the data subset size, such that 
difference between the two rankings is minimal

• Directly correlates with the confidence in the 
results of any paper comparing different 
recommendation models trained on sub-sampled 
data (vast majority)



SVP-CF

Premise: Easy parts of a dataset are most likely easy for all recommendation algorithms. Hence, removing 
such data is unlikely to change the relative ordering of algorithms.

Selection-via-proxy for collaborative filtering data
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Selection-via-proxy for collaborative filtering data

Robust framework:

• Uses a proxy model to tag the importance of each 
interaction

• Efficiently handle multiple recommendation 
scenarios e.g. explicit, implicit, sequential, etc.

• Sample across varieties of data modalities: 
interactions, users, items, or even combinations 
of them
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Mark the “importance” of each 
interaction in D

SVP- CF- Prop
Handling the missing-not-at-random characteristics

• Re-weigh the importance scores in SVP-CF using 
the probability of a user-item interaction going 
missing (propensity).

• Implicitly also handles the long-tail and data 
sparsity issues in user-item interaction data.
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(δ(u, i) − r)2

pu,i
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−AUC (δ(u, i), r)
pu,i

Propensity Model

pu,i = P(interaction observed | relevant)
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      DATA-GENIE

Premise: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a 
sampling budget, can automatically predict which sampling scheme would be the best?

Which sampler is best for me? 
🧞



🧞DATA-GENIE

• Dynamically predicts the performance of a 
sampling strategy for any given CF-dataset.

• A trained DATA-GENIE model can transfer to any 
dataset, and can predict the utility of any 
sampling strategy.

Which Sampler is best for me?

For all samplers
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🧞DATA-GENIE

• Circumvents the time-consuming 
process of training and benchmarking 
various algorithms.

• DATA-GENIE-regression: 
 

• DATA-GENIE-ranking: 
 

arg min ∑
𝒟, s, p

(ℛs,p − ℛ̂s,p)
2

arg min ∑
𝒟, p

∑
ℛsi,p > ℛsj,p

− ln σ (ℛ̂si,p − ℛ̂sj,p)

How is it trained?
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🧞 DATA-GENIE



Experiments
Setup

• 16 different sampling strategies

• 6 collaborative filtering datasets

• Explicit/Implicit/Sequential feedback for each CF-dataset

• 7 recommendation algorithms in our benchmarking suite

• A total of 400k recommendation models trained! (∼9 months of compute time!)

Table 1: Sampling 
strategies used in our 

experiments



Experiments
Major Results

Table 1: Average Kendall’s Tau of 
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) 
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of 
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling 
performance with extreme sampling?



Experiments
Major Results

Table 1: Average Kendall’s Tau of 
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) 
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of 
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling 
performance with extreme sampling?



Experiments
Major Results

Table 1: Average Kendall’s Tau of 
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) 
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of 
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling 
performance with extreme sampling?



Experiments
Major Results

Table 1: Average Kendall’s Tau of 
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) 
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of 
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling 
performance with extreme sampling?



Experiments
Major Results

Table 1: Average Kendall’s Tau of 
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) 
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of 
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling 
performance with extreme sampling?

• Using SVP-CF, we can efficiently gauge the 
ranking of different algorithms with 
adequate confidence on 40-50% data sub-
samples, leading in an ∼2x time speedup.

• DATA-GENIE enjoys the same level of 
performance with only 10% of the original 
data, equating to ∼5.8x time speedup!



Given an average weekly RecSys development cycle consisting of:

• Training / testing various recommendation algorithms 
• On a medium-sized industrial dataset 
• Over a modest GPU setup
 
We compare the downstream CO2 emissions of a brute-force search vs. DATA-GENIETable 1: CO2 emissions comparison

• Relative ordering of recommendation algorithms is just a start — encourage the community to think more about general coresets in 
the context of recommendation.

• Analyzing the fairness aspects of training recommendation algorithms on data subsets.

• Transfer to other domains — classification, clustering, graphs, etc.

Environmental Consequences

Future Directions



Thanks!
       @noveens97

For paper, code, and these slides:


