
Noveen Sachdeva ; Carole-Jean Wu ; Julian McAuley

On Sampling Collaborative
Filtering Datasets

Research Goal
SubsampleCF Dataset

D
CF Dataset

Dp

Recommendation Algorithms

R1 R2 R3

R4 R5

…

Ranking

R4

R2

R1

R5

…

Ranking

R2

R4

R1

R3

…

p%

Minimize the difference
b/w these two rankings

Train Train

Generate a sample of a collaborative filtering (CF)
dataset which can accurately retain the relative
ordering of different recommendation algorithms

• Minimize the data subset size, such that
difference between the two rankings is minimal

• Directly correlates with the confidence in the
results of any paper comparing different
recommendation models trained on sub-sampled
data (vast majority)

SVP-CF

Premise: Easy parts of a dataset are most likely easy for all recommendation algorithms. Hence, removing
such data is unlikely to change the relative ordering of algorithms.

Selection-via-proxy for collaborative filtering data

SVP- CF
Mark the “importance” of each

interaction in D

CF Dataset
D

user1, item1, rel1

user1, item2, rel2

user2, item3, rel3

user3, item1, rel4

…

δ : (u, i) → ℝ

∇(u, i, r) = ∑
epoch

(δ(u, i) − r)2

∇(u, i, r) = ∑
epoch

− AUC (δ(u, i), r)

Explicit
feedback

Implicit/Seq.
feedback

Greedily retain either p% of :

(1) Interactions with highest .

(2) Users with highest .
(3) Items with highest .

∇(u, i, r)
∇(u)
∇(i)

…

Train an inexpensive
proxy model

Selection-via-proxy for collaborative filtering data

Robust framework:

• Uses a proxy model to tag the importance of each
interaction

• Efficiently handle multiple recommendation
scenarios e.g. explicit, implicit, sequential, etc.

• Sample across varieties of data modalities:
interactions, users, items, or even combinations
of them

CF Dataset
Dp

user1, item1, rel1

user1, item2, rel2

user2, item3, rel3

user3, item1, rel4

…

Mark the “importance” of each
interaction in D

SVP- CF- Prop
Handling the missing-not-at-random characteristics

• Re-weigh the importance scores in SVP-CF using
the probability of a user-item interaction going
missing (propensity).

• Implicitly also handles the long-tail and data
sparsity issues in user-item interaction data.

∇(u, i, r) = ∑
epoch

(δ(u, i) − r)2

pu,i

∇(u, i, r) = ∑
epoch

−AUC (δ(u, i), r)
pu,i

Propensity Model

pu,i = P(interaction observed | relevant)

CF Dataset
D

user1, item1, rel1

user1, item2, rel2

user2, item3, rel3

user3, item1, rel4

…

δ : (u, i) → ℝ

Explicit
feedback

Implicit/Seq.
feedback

Greedily retain either p% of :

(1) Interactions with highest .

(2) Users with highest .
(3) Items with highest .

∇(u, i, r)
∇(u)
∇(i)

…

Train an inexpensive
proxy model

CF Dataset
Dp

user1, item1, rel1

user1, item2, rel2

user2, item3, rel3

user3, item1, rel4

…

 DATA-GENIE

Premise: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a
sampling budget, can automatically predict which sampling scheme would be the best?

Which sampler is best for me?
🧞

🧞DATA-GENIE

• Dynamically predicts the performance of a
sampling strategy for any given CF-dataset.

• A trained DATA-GENIE model can transfer to any
dataset, and can predict the utility of any
sampling strategy.

Which Sampler is best for me?

For all samplers

SubsampleCF Dataset
D p%

Sampled Datasets
According to diff. sampling strategies

Ds1,p Ds2,p Ds3,p

Ds4,p Ds5,p

D

Ds,p

DATA-GENIE

🧞

Ranking of different sampling strategies
Sorted according to predicted

S4, S3, S1, S5 …

ℛ̂s,p

ℛ̂s,p

🧞DATA-GENIE

• Circumvents the time-consuming
process of training and benchmarking
various algorithms.

• DATA-GENIE-regression:

• DATA-GENIE-ranking:

arg min ∑
𝒟, s, p

(ℛs,p − ℛ̂s,p)
2

arg min ∑
𝒟, p

∑
ℛsi,p > ℛsj,p

− ln σ (ℛ̂si,p − ℛ̂sj,p)

How is it trained?

CF Dataset
D

CF Dataset
Ds,p

Recommendation
Algorithms

R1 R2 R3

R4 R5

…

Ranking

R4

R2

R1

R5

Ranking

R2

R4

R1

R3

Sampler s

Train

ℛs,p
Subsample p%

Train

D

Ds,p

Embed the
entire dataset

Graph Convolution
Network

E

Es,p

Fusion

Multi-layer
Perceptron

ℛ̂s,p

Kendall’s
Tau

Ground-truth

🧞 DATA-GENIE

Experiments
Setup

• 16 different sampling strategies

• 6 collaborative filtering datasets

• Explicit/Implicit/Sequential feedback for each CF-dataset

• 7 recommendation algorithms in our benchmarking suite

• A total of 400k recommendation models trained! (∼9 months of compute time!)

Table 1: Sampling
strategies used in our

experiments

Experiments
Major Results

Table 1: Average Kendall’s Tau of
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling
performance with extreme sampling?

Experiments
Major Results

Table 1: Average Kendall’s Tau of
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling
performance with extreme sampling?

Experiments
Major Results

Table 1: Average Kendall’s Tau of
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling
performance with extreme sampling?

Experiments
Major Results

Table 1: Average Kendall’s Tau of
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling
performance with extreme sampling?

Experiments
Major Results

Table 1: Average Kendall’s Tau of
various sampling strategies

• Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling
performance with extreme sampling?

• Using SVP-CF, we can efficiently gauge the
ranking of different algorithms with
adequate confidence on 40-50% data sub-
samples, leading in an ∼2x time speedup.

• DATA-GENIE enjoys the same level of
performance with only 10% of the original
data, equating to ∼5.8x time speedup!

Given an average weekly RecSys development cycle consisting of:

• Training / testing various recommendation algorithms
• On a medium-sized industrial dataset
• Over a modest GPU setup

We compare the downstream CO2 emissions of a brute-force search vs. DATA-GENIETable 1: CO2 emissions comparison

• Relative ordering of recommendation algorithms is just a start — encourage the community to think more about general coresets in
the context of recommendation.

• Analyzing the fairness aspects of training recommendation algorithms on data subsets.

• Transfer to other domains — classification, clustering, graphs, etc.

Environmental Consequences

Future Directions

Thanks!
 @noveens97

For paper, code, and these slides:

