On Sampling Collaborative Filtering Datasets

Noveen Sachdeva ; Carole-Jean Wu ; Julian McAuley

Research Goal

Generate a sample of a collaborative filtering (CF) dataset which can accurately retain the **relative ordering** of different recommendation algorithms

- Minimize the data subset size, such that difference between the two rankings is minimal
- Directly correlates with the confidence in the results of **any** paper comparing different recommendation models trained on sub-sampled data (vast majority)

SVP-CF

Selection-via-proxy for collaborative filtering data

<u>Premise</u>: **Easy** parts of a dataset are most likely **easy** for all recommendation algorithms. Hence, removing such data is unlikely to change the relative ordering of algorithms.

SVP-CF

Selection-via-proxy for collaborative filtering data

Robust framework:

- Uses a proxy model to tag the **importance** of each interaction
- Efficiently handle multiple recommendation scenarios *e.g.* explicit, implicit, sequential, etc.
- Sample across varieties of data modalities: interactions, users, items, or even combinations of them

SVP-CF-Prop

Handling the missing-not-at-random characteristics

- Re-weigh the importance scores in SVP-CF using the probability of a user-item interaction going missing (propensity).
- Implicitly also handles the long-tail and data sparsity issues in user-item interaction data.

Which sampler is best for me?

<u>Premise</u>: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a sampling budget, can **automatically predict** which sampling scheme would be the best?

Which Sampler is best for me?

- Dynamically predicts the **performance** of a sampling strategy for any given CF-dataset.
- A trained DATA-GENIE model can transfer to any dataset, and can predict the utility of any sampling strategy.

How is it trained?

- Circumvents the time-consuming process of training and benchmarking various algorithms.
- DATA-GENIE-regression:

$$\arg\min\sum_{\mathcal{D}, s, p} \left(\mathcal{R}_{s,p} - \hat{\mathcal{R}}_{s,p}\right)^2$$

• DATA-GENIE-ranking:

 $\arg\min\sum\sum_{i,p}\sum_{j,p}-\ln\sigma\left(\hat{\mathscr{R}}_{s_i,p}-\hat{\mathscr{R}}_{s_j,p}\right)$ $\mathcal{D}, p \mathcal{R}_{s_i, p} > \mathcal{R}_{s_j, p}$

D

Ds,p

Experiments Setup

	Sampling strategy
Jg	Random
ulqu	Stratified
sam	Temporal
on	SVP-CF w/ MF
acti	SVP-CF w/ Bias-only
tera	SVP-CF-Prop w/ MF
In	SVP-CF-Prop w/ Bias-only
	Random
ling	Head
du	SVP-CF w/ MF
r sa	SVP-CF w/ Bias-only
Jsei	SVP-CF-Prop w/ MF
1	SVP-CF-PROP w/ Bias-only
-	Centrality
aph	Random-walk
Gr	Forest-fire

Table 1: Sampling strategies used in our experiments

- 16 different sampling strategies
- 6 collaborative filtering datasets
- Explicit/Implicit/Sequential feedback for each CF-dataset
- 7 recommendation algorithms in our benchmarking suite
- A total of **400***k* recommendation models trained! (~9 months of compute time!)

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
ıg	Random	0.407
ildi	Stratified	0.343
sam	Temporal	0.405
on	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
	Random	0.431
ling	Head	0.19
: sampl	SVP-CF w/ MF	0.344
	SVP-CF w/ Bias-only	0.343
Jse	SVP-CF-Prop w/ MF	0.429
1	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
apł	Random-walk	0.396
Gr	Forest-fire	0.382

Table 1: Average Kendall's Tau of various sampling strategies

- different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
ıg	Random	0.407
ildi	Stratified	0.343
sam	Temporal	0.405
on	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
50	Random	0.431
ling	Head	0.19
: sampl	SVP-CF w/ MF	0.344
	SVP-CF w/ Bias-only	0.343
Jse	SVP-CF-Prop w/ MF	0.429
1	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
aph	Random-walk	0.396
Gr	Forest-fire	0.382

Table 1: Average Kendall's Tau of various sampling strategies

- different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of

Random

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
ıg	Random	0.407
plir	Stratified	0.343
sam	Temporal	0.405
on	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
50	Random	0.431
ling	Head	0.19
mp	SVP-CF w/ MF	0.344
r sa	SVP-CF w/ Bias-only	0.343
Use	SVP-CF-Prop w/ MF	0.429
-	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
aph	Random-walk	0.396
Gr	Forest-fire	0.382

Table 1: Average Kendall's Tau of various sampling strategies

- different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of

Random SVP-CF

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
Jg	Random	0.407
plir	Stratified	0.343
sam	Temporal	0.405
on s	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
50	Random	0.431
ling	Head	0.19
r sampl	SVP-CF w/ MF	0.344
	SVP-CF w/ Bias-only	0.343
Use	SVP-CF-Prop w/ MF	0.429
1	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
apł	Random-walk	0.396
Gr	Forest-fire	0.382

Table 1: Average Kendall's Tau of various sampling strategies

- different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of

Random

SVP-CF

Data-Genie

Major Results

	Sampling strategy	<i>Average</i> Kendall's Tau
ıg	Random	0.407
plir	Stratified	0.343
sam	Temporal	0.405
on	SVP-CF w/ MF	0.484
acti	SVP-CF w/ Bias-only	0.468
tera	SVP-CF-Prop w/ MF	0.43
In	SVP-CF-Prop w/ Bias-only	0.458
50	Random	0.431
ling	Head	0.19
mp	SVP-CF w/ MF	0.344
: sai	SVP-CF w/ Bias-only	0.343
Jse	SVP-CF-Prop w/ MF	0.429
1	SVP-CF-Prop w/ Bias-only	0.445
-	Centrality	0.266
aph	Random-walk	0.396
Gr	Forest-fire	0.382

Table 1: Average Kendall's Tau of various sampling strategies

- different recommendation algorithms.

Figure 2: Does DATA-GENIE improve sampling performance with extreme sampling?

• Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be the worst ideas of all sampling strategies.

• SVP-CF significantly outperforms other samplers in retaining the ranking of

- Using SVP-CF, we can efficiently gauge the ranking of different algorithms with adequate confidence on 40-50% data subsamples, leading in an $\sim 2x$ time speedup.
- DATA-GENIE enjoys the same level of performance with only 10% of the original data, equating to ~5.8x time speedup!

Environmental Consequences

Consumption	CO ₂ e (lbs.)
1 person, NY⇔SF flight	2k
Human life, 1 year avg.	11k
Weekly RecSys development cycle	20k
" w/ DATA-GENIE	3.4k

Table 1: CO₂ emissions comparison

Given an average weekly RecSys development cycle consisting of:

- Training / testing various recommendation algorithms
- On a medium-sized industrial dataset
- Over a modest GPU setup

We compare the downstream CO₂ emissions of a brute-force search vs. DATA-GENIE

Future Directions

- the context of recommendation.
- Analyzing the fairness aspects of training recommendation algorithms on data subsets.
- Transfer to other domains classification, clustering, graphs, etc.

• Relative ordering of recommendation algorithms is just a start — encourage the community to think more about general coresets in

Thanks!

For paper, code, and these slides:

SCAN