Data-Centric Approaches to Recommendation

Question: Is more data what you need for better recommendation?
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® Primer, Premise & Scope
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Premise

What is Data-Centric AI?

Model-Centric Al
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Premise

Why Data-Centric Recommender Systems?

e Unsupervised — large quantities of user-feedback

® Scaling-up systems by scaling-down data
e Shift focus from data quantity — data “quality”
e Dimension in performance : resources tradeoft

® Savings in time, human-effort & environment
degradation
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Sampling

Scope

Scaling-up Systems by Scaling-down Data

Population

Inference

Data down-sampling

Bias-sensitive Variance-sensitive
Generate a data sample which can guarantee similar Generate a data sample which can accurately retain the
performance of the same downstream model when relative ordering of different learning algorithms when
trained on the full-dataset vs. data summary trained on the full-dataset vs. data summary
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Scope

Scaling-up Systems by Scaling-down Data

Sampling

------

Sample

Population

Inference

Data down-sampling

Bias-sensitive

Generate a data sample which can guarantee similar
performance of the same downstream model when
trained on the full-dataset vs. data summary

® Direct deployment of models trained on data summary
e Faster research iterations

e Need modeling assumptions (at least for RecSys)

Variance-sensitive

Generate a data sample which can accurately retain the
relative ordering of different learning algorithms when
trained on the full-dataset vs. data summary

e Model search e.g. NAS, hyper-parameter optimization
e Offline model-to-model comparison

¢ No modeling assumptions



Sampling

-----

Scope

Scaling-up Systems by Scaling-down Data

Sample

Population

Inference

Data down-sampling

Sampling Synthesis
Pick the most informative subset of data-points Generate a set of fake and informative data-points

® Heuristics e Typically, treat the to-be-synthesized data as

¢ Random, Head-user, Random-walks, Centrality... parameters, and learn them through gradient descent
® Coreset construction e In addition to being useful, the synthesized data is

e Combinatorial optimization fake — easy to share, release ...
e Expressivity limited by the collected data e Expressivity limited by the optimization procedure



SVP-CF

Selection-via-proxy for collaborative filtering data

Premise: Easy parts of a dataset are most likely easy for all recommendation algorithms. Hence, removing
such data is unlikely to change the relative ordering of algorithms.




SVP- CF

Selection-via-proxy for collaborative filtering data

Robust framework:

e Uses a proxy model to tag the importance of each
interaction

e Efficiently handle multiple recommendation scenarios
e.g. explicit, implicit, sequential, etc.

® Sample across varieties of data modalities: interactions,
users, items, or even combinations of them
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SVP- CEF- Prop

Handling the missing-not-at-random characteristics

e Re-weigh the importance scores in SVP-CF using the
probability of a user-item interaction going missing

(propensity).

e Implicitly also handles the long-tail and data sparsity
issues in user-item interaction data.
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ig Barr—CENTE

Which sampler is best for me?

Premise: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a
sampling budget, can automatically predict which sampling scheme would be the best?




fg DATA—GENIE

Which Sampler is best for me?

e Dynamically predicts the performance of a sampling
strategy for any given CF-dataset.

® A trained DaTa-GENIE model can transfer to any dataset,
and can predict the utility of any sampling strategy.
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How is it trained?

e Circumvents the time-consuming process
of training and benchmarking various
algorithms.

® DATA-GENIE-Tegression:

)
arg min Z <9§3S,p — Q?S,p>

D S5D

® DATA-GENIE-ranking:
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Experimments

Setup

Sampling strategy

Interaction sampling

Random
Stratified
Temporal

SVP-CF w/ MF
SVP-CF w/ Bias-only
SVP-CF-Pror w/ MF

SVP-CF-Prop w/ Bias-only

User sampling

Random
Head
SVP-CF w/ MF
SVP-CF w/ Bias-only
SVP-CF-Pror w/ MF
SVP-CF-Prop w/ Bias-only

Graph

Centrality
Random-walk

Forest-fire

Table 1: Sampling

strategies used in our

experiments

® 16 different sampling strategies

® 6 collaborative filtering datasets

e Explicit/Implicit/Sequential feedback for each CF-dataset
¢ 7 recommendation algorithms in our benchmarking suite

e A total of 400k recommendation models trained! (~9 months of compute time!)
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Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
o0 Random 0.407
= Stratified 0.343
g Temporal 0.405
5 SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
g Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 2: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality) seem to be
the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of different
recommendation algorithms.

S 1D
e e e Using SVP-CF, we can efficiently gauge the

Soe &= Random ranking of different algorithms with adequate

~ 0.4 Pk ;\a/::):-:(lizenie confidence on 40-50% data sub-samples, leading
£ 0.2 Pareto in an ~2x time speedup.

200
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% Data sampled (Retained) .
- e DaTA-GENTE enjoys the same level of performance

with only 10% of the original data, equating to

Figure 3: Does DaTA-GENIE improve sampling ~5.8x time speedup!

performance with extreme sampling?
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0o0-AE

Infinite-width AutoEncoder for Recommendation

Premise: Does stretching the bottleneck layer of an autoencoder till oo help in better recommendation?




oo-AE

Primer: Neural Tangent Kernel

® Infinite-width Correspondence: Performing Kernelized Ridge
Regression with the Neural Tangent Kernel (NTK) emulates the

training of an infinite-width NN for an infinite number of SGD steps.

e For a given neural network architecture f, : R? = R, its
corresponding NTK K : R x R? —~ R is given by:

’ < dfg(x) Ofg(x") >
el ]

NG =
O~W

e [ earning follows a double-descent phenomenon

¢ Finite-width counterparts empirically outperform NTK for standard
image classification tasks
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oo-AE

Methodology

e X is the bag-of-items representation for user u i.e. all the items that u interacted
with, and we aim to reconstruct it along with missing user preferences

e Due to the infinite-width correspondence, co-AE optimizes in closed-form:
X=K-(K+AD)™'-X st K,, =K(X,X,) Vu,v

e The optimization has only a single hyper-parameter A

* Time complexity Training: O(U “F ) Interence- O )

* Memory complexity  Training: O(U - I + U?) Inference: O(U - I)
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oo-AE

Experiments

—— Magazine == NI Douban

Dataset NeuMF GCN MVAE EASE o~-AE
Magazine 156 225 12.1 25 23.0
ML-1M 25.6 28.8 22+ 29.8 32.8

Douban 13.3 16.6 16.1 194 24.9
Netflix 120 — 20.8 26.8 30.5%

1001

o
(@)

% maximum NDCG®@100

e e 10
: : . : - # bottleneck layers
Table 5: nDCG@10 performance (higher is better) of various recommendation algorithms.

* represents training on 5% random users. Figure 6: Performance of co-AE with varying depth.

e oo-AE outperforms various state-of-the-art methods, even when trained on just 5% random users
¢ 1 layer seems to be enough for optimal recommendation performance: common folk-knowledge

e Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great!
But how to scale it up? &
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Distull-CF

Data Distillation for Collaborative Filtering Data

Premise: Treat the to-be-synthesized data as parameters, and learn them through a bilevel optimization.

Users

ltems
Movies/Ads/Songs ...

Items
Movies/Ads/Songs ...



Distull-CF

Overview & Challenges
Outer loop — optimize the support set for a fixed learning algorithm
Support dataset Differentiable cost-function
Challenges: t

e D’ consists of discrete (u, i, r) tuples

e Semi-structuredness: some users/items are more ey S ST i e e ( | "
popular than others : =l (i riD ) ~

e D' is typically extremely sparse | Optimal recommendation
| algorithm trained on 2s

Inner loop — optimize the learning algorithm for a fixed support set

25



Items

D i Still_ C F Fake m Sampling prior matrix
Users X°

Methodolo
&Y Multi-step
Gumbel Sampling
(with replacement)
0 0 0 Intermediate matrix
0 0 0 5
0 0 0 0 0 0 X

Robust framework:

e Uses Gumbel sampling on X* to mitigate the (Inner loop)

l Train co-AE on X
heterogeneity of the problem

® Perform Gumbel sampling multiple times for each fake-

user to handle dynamic user/item popularity l

Back-propagate on X°

e Automatically control sparsity in X* by controlling the {Ouierioop)

entropy in X°

e Optimizes for data-quality rather th tit arg min [t
plmIZES or aaqualyra er dn quanly gXS : _(I—Xu)'lOg(l—KXMXS-C{)_
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Distull-CF

Experiments

e Using Distill-CF, we can get 96-105% of
full-data performance on as small as
0.1% data sub-samples, leading to as
much as ~1000x time speedup!

e Distill-CF works well even for the
second-best EASE model, even though
data isn’t optimized for it

Amazon Magazine ML-1M Douban Netflix
V 20
30 1 " =
e R = i E 20 e T
o : 151 '
o 201 0 m = = »
i i |
= © @ 10 © ‘
b o o QZ 10 *
104 o S0 i i = : V
5-
01 (- —— - % 01 or—@
1.0 10.0 100.0 0.1 1.0 10.0 100.0 1.0 10.0 100.0 0.01 0.1 1.0
% Users sampled % Users sampled % Users sampled % Users sampled
—»— |nteraction RNS Head User ¢— SVP-CF User —e— User RNS s=— DISTILL-CF

Figure 7: Does Distill-CF outperform other samplers? (Log-scale)

Dataset NeuMF GCN MVAE EASE «-AE (D:t'ifcm
Magazime =218 67— ss o s A= 27 83 250 23.8
MIEZING 2 956288 27001 )98 23):3 32.5
Douban 133 166 161 194 249 24.2
Netflix- 120 =~ — ~ 008 268 305" -~ 305

Table 8: nDCG@10 performance of various recommendation

algorithms. * represents training on 5% random users. Distill-CF has
a user budget of just 500 (0.1% for Netflix).
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Figure 9: Distill-CF + EASE for
the ML-1M dataset.



Distull-CF

Experiments (Contd.)

e Distill-CF is robust to noise (even though
not optimized for it), and is able to offer
significant performance even at high
noise ratios and very small support
datasets!

® Less is more: EASE is more accurate
when trained on lesser amounts of data
generated by Distill-CF, compared to
training on the full-data

80% Users 40% Users 10% Users 5% Users 2% Users
= 100 s <
© g y
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O .2 ¢ ,
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X 0 | ; -
009 L 2 5 @ 05 1l 2 5) 0) 051l 2 5 @ 0.5 2 5 0051l 2 5
% Noise % Noise % Noise % Noise % Noise
—— Head User — SVP-CF User o— User RNS —a— DisTILL-CF
Figure 10: Performance of different samplers when there is noise in the original data.
ML-1M ML-1M (0.5% noise) ML-1M (1% noise ML-1M (2% noise) ML-1M (5% noise)
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% Users sampled
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% Users sampled

= User-RNS + oco-AE *

% Users sampled
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% Users sampled

% Users sampled
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Figure 11: Performance comparison of co-AE vs. EASE when trained on down-sampled, noisy data.
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Future Directions



Extensions

o0 Recommendation Networks Ranksets

e Making it more scalable — sparse kernel computations e Formalize the notion of variance-sensitive sampling

® More applications — search, XC, ... o ig Dara-GENIE 1is still a two step-process. How to

o 5
e Extending to sequential recommendation OpHmige 1018 Fan el

Fairness & Privacy Applications

e How to optimize for these while sampling / distilling e Continual Learning — catastrophic forgetting
e Guaranteeing data privacy in distills, such that de- e NAS, Hyper-parameter Optimization

anonymization is impossible
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Thank you!

Questions?

YW @noveens97

For papers, code, and these slides:
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