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Question: Is more data what you need for better recommendation?
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Infinite-width Autoencoder for Recommendation

Premise: Does stretching the hidden layers of an autoencoder till oo help in better recommendation?
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Primer: Neural Tangent Kernel
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¢ Finite-width counterparts empirically outperform NTK for
standard image classification tasks Figure 1: Credit: https://openai.com/blog/deep-double-descent/
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Methodology

e X is the bag-of-items representation for user u i.e. all the items that u interacted
with, and we aim to reconstruct it along with missing user preferences

e Due to the infinite-width correspondence, co-AE optimizes in closed-form:
X=K-(K+A)™'-X st K,,£2KX,X,) Vu,v

e The optimization has only a single hyper-parameter 4

* Time complexity Training: O(U “F ) Interence- O )

* Memory complexity  Training: O(U - [ + U?) Inference: O(U - I)
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Experiments
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Table 2: nDCG@10 performance (higher is better) of various recommendation algorithms.

* represents training on 5% random users. Figure 3: Performance of co-AE with varying depth.

e oo-AE outperforms various state-of-the-art methods, even when trained on just 5% random users (Netflix)
¢ 1 layer seems to be enough for optimal recommendation performance (common folk-knowledge)

e Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great!
But, how to scale it up? 0
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Data Distillation for Collaborative Filtering Data

Premise: Can we summarize the massive & sparse user-item matrix into a terse data summary?

Users
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What is Data-Centric AI?
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Premise

Why Data-Centric Recommender Systems?

e Unsupervised — large quantities of user-feedback

e Scaling-up systems by scaling-down data
e Shift focus from data quantity — data “quality”

e Savings in time, human-effort & environmental
resources
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Train simpler models
on large data

E.g. Linear modeling, Matrix
Factorization, Item-item CEF, etc.

Click

Log

 \J

Very large!

Train expressive models

on down-sampled data

E.g. Higher-order modeling,
User-user CEF etc.
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Overview & Challenges

Idea: Treat the to-be-synthesized data as parameters, and
learn them through a bilevel optimization. Outer loop — optimize the data summary for a fixed learning algorithm

, (u,4),7)]

» Original Dataset

e Challenges:

e Data consists of discrete (u, i, r) tuples

® Data is extremely sparse

® Dynamic users/item popularity

e Hxpensive bilevel optimization

e Use 0o-AE for closed-form computation
of the inner loop

Optimal recommendation Data Ditferentiable
algorithm trained on 2s Summary cost-function

Inner loop — optimize the learning algorithm for a fixed data summar
e Optimizes for data-quality rather than quantity i 595 Y
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Sampling prior matrix

XS
Methodolo
&Y Multi-step
Gumbel Sampling
(with replacement)

0 0 0 Intermediate matrix
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l Train co-AE on X°

e Uses Gumbel sampling on X° to mitigate the (Inner loop)

heterogeneity of the problem

e Perform Gumbel sampling multiple times for each fake-
user to handle dynamic user/item popularity l

Back-propagate to X°

e Automatically control sparsity in X by controlling the Duteroop)

entropy in X”
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Figure 4: Does Distill-CF outperform other samplers? (Log-scale)
e Using Distill-CF, we can get 96-105% of
full-data performance on as small as
: 2 ' co-AE
0.1% data sub sarpples, leading to as Dataset NeuMF GCN MVAE EASE «-AE ™ -
much as ~1000x time speedup! (Distill-CF)
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* Distill-CF works well even for the MILZING 256« - 088 001 D08 =8p8. " 230k Ty
second-best model (EASE), even though Douban 1353 66 1621 194 24.9 YD
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Table 5: nDCG@10 performance of various recommendation Figure 6: Distill-CF + EASE for
algorithms. * represents training on 5% random users. Distill-CF has the ML-1M dataset.

a user budget of just 500 (0.1% for Netflix).
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Experiments (Contd.)

e Distill-CF is robust to noise (even though
not optimized for it), and is able to offer
significant performance even at high
noise ratios and very small support
datasets!

® Less is more: EASE is more accurate
when trained on lesser amounts of data
generated by Distill-CF, compared to
training on the full-data
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Figure 7: Performance of different samplers when there is noise in the original data.
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Figure 8: Performance comparison of co-AE vs. EASE when trained on down-sampled, noisy data.
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Thank you!

YW @noveens97

For paper, code, and these slides:
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