On Sampling Collaborative
Filtering Datasets

Noveen Sachdeva ; Carole-Jean Wu ; Julian McAuley

UCSanDiego FACEBOOK Al




Research Goal

Generate a sample of a collaborative filtering (CF)
dataset which can accurately retain the relative
ordering of different recommendation algorithms

® Minimize the data subset size, such that
difference between the two rankings is minimal

® Directly correlates with the confidence in the
results of any paper comparing different
recommendation models trained on sub-sampled
data (vast majority)
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SVP-CF

Selection-via-proxy for collaborative filtering data

Premise: Easy parts of a dataset are most likely easy for all recommendation algorithms. Hence, removing
such data is unlikely to change the relative ordering of algorithms.
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Selection-via-proxy for collaborative filtering data
\
Robust framework:
® Uses a proxy model to tag the importance of each
interaction
e Efficiently handle multiple recommendation
scenarios e.g. explicit, implicit, sequential, etc.
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SVP- CEF- Prop

Handling the missing-not-at-random characteristics

® Re-weigh the importance scores in SVP-CF using
the probability of a user-item interaction going
missing (propensity).

® Implicitly also handles the long-tail and data
sparsity issues in user-item interaction data.
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Which sampler is best for me?

Premise: Can we build an oracle-model which given (1) a dataset, (2) list of sampling strategies, and (3) a
sampling budget, can automatically predict which sampling scheme would be the best?




fg DATA—GENIE

Which Sampler is best for me?

® Dynamically predicts the performance of a
sampling strategy for any given CF-dataset.

® A trained Data-GeNIE model can transfer to any
dataset, and can predict the utility of any
sampling strategy.
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Ground-truth
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How 1is it trained?
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e Circumvents the time-consuming Suil e

process of training and benchmarking
various algorithms.
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Experimments

Setup

Sampling strategy

op Random

= Stratified

g Temporal

g SVP-CF w/ MF

S SVP-CF w/ Bias-only

o SVP-CF-Pror w/ MF

= SVP-CF-Prop w/ Bias-only
Random

éﬂ Head

g SVP-CF w/ MF

% SVP-CF w/ Bias-only

K SVP-CF-Prop w/ MF

SVP-CF-Prop w/ Bias-only

Centrality

&=

= Random-walk

S Forest-fire

Table 1: Sampling

strategies used in our

experiments

® 16 different sampling strategies

® 6 collaborative filtering datasets

® Explicit/Implicit/Sequential feedback for each CF-dataset
® 7 recommendation algorithms in our benchmarking suite

e A total of 400k recommendation models trained! (~9 months of compute time!)



Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
o0 Random 0.407
= Stratified 0.343
g Temporal 0.405
5 SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
g Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 1: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.
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Figure 2: Does Dara-GENIE improve sampling
performance with extreme sampling?



Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
o0 Random 0.407
= Stratified 0.343
g Temporal 0.405
5 SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
g Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 1: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

g
o

e
(o9

Random

=
o

o
N

Average Kendall's Tau
(@)
S

5
o

80 60 40 2075107
% Data sampled (Retained)

Figure 2: Does Dara-GENIE improve sampling
performance with extreme sampling?



Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
o0 Random 0.407
= Stratified 0.343
g Temporal 0.405
5 SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
g Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 1: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

b
(e

=
o9

Random
SVP-CF

SRR
ey

=
N

Average Kendall's Tau

=
o

80 60 40 205107 =t
% Data sampled (Retained)

Figure 2: Does Dara-GENIE improve sampling
performance with extreme sampling?



Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
o0 Random 0.407
= Stratified 0.343
g Temporal 0.405
5 SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
g Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 1: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

% 1.0
' 0.8 :
r=U A
- 0.6 5 Random
=
U] - SVP-CF
N0 ;
) Data-Genie
(@)]
© 0.2
S
< 0.0

80 60 40 2025107 =

% Data sampled (Retained)

Figure 2: Does Dara-GENIE improve sampling
performance with extreme sampling?



Experimments

Major Results

Average
Sampling strategy Kendall’s

Tau
op Random 0.407
= Stratified 0.343
g Temporal 0.405
g SVP-CF w/ MF 0.484
S SVP-CF w/ Bias-only 0.468
> SVP-CF-Prop w/ MF 0.43
= SVP-CF-Prop w/ Bias-only |  0.458
Random 0.431
:,_%D Head 0.19
g SVP-CF w/ MF 0.344
§ SVP-CF w/ Bias-only 0.343
K SVP-CF-Prop w/ MF 0.429
SVP-CF-Prop w/ Bias-only 0.445
Centrality 0.266

&=
= Random-walk 0.396
S Forest-fire 0.382

Table 1: Average Kendall’s Tau of
various sampling strategies

e Widely used practice of making dense data subsets (e.g. Head-user, centrality)
seem to be the worst ideas of all sampling strategies.

e SVP-CF significantly outperforms other samplers in retaining the ranking of
different recommendation algorithms.

e ;Z : e Using SVP-CF, we can efficiently gauge the
i G ranking of different algorithms with

%04 e adequate confidence on 40-50% data sub-
g0. Pareto samples, leading in an ~2x time speedup.
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® DATA-GENTE enjoys the same level of
Figure 2: Does DaTA-GENIE improve sampling per formance Wlth Only 10% of the OT 1g1na1
performance with extreme sampling? data, equatmg to ~5.8x time speedup!



Environmental Consequences

Given an average weekly RecSys development cycle consisting of:

Consumption CO;e (Ibs.)
speron ek Ll L ® Training / testing various recommendation algorithms
Human life, 1 year avg. 11k
. st : :
i e e T On a medium-sized industrial dataset
" W/ DATA-GENIE 3.4k e Over a modest GPU setup
el B anconan on We compare the downstream CO; emissions of a brute-force search vs. DaTA-GENTIE

Future Directions

e Relative ordering of recommendation algorithms is just a start — encourage the community to think more about general coresets in
the context of recommendation.

e Analyzing the fairness aspects of training recommendation algorithms on data subsets.

e Transfer to other domains — classification, clustering, graphs, etc.
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